MIT HOMEOPATHY STUDY OF ALLIUM SATIVUM

Allium sativa or garlic is a prominent drug in homeopathy Materia Medica. Even though homeopathy is considered to be a therapeutic method of treating diseases using potentized forms of drug substances, most homeopaths use garlic or ALLIUM SATIVA in mother tincture form in their normal practice, as a shortcut to produce “some results” by whatever means. In mother tincture form, it contains all the chemical molecules discussed below in this article. These molecules can act as therapeutic agents by their chemical properties, involving a biological mechanism that is exactly same as the action of allopathic drugs.

When potentized above 12c or avogadro limit, the preparations will not contain any drug molecule, but only molecular imprints of drug molecules. Molecular imprints are supra-molecular cavities formed in water-ethanol matrix, carrying the three-dimensional spacial conformations of drug molecules in a negative orientation. These molecular imprints act as artificial binding pockets for not only the original drug molecules, but any pathogenic molecule having functional groups of similar conformation. Molecular imprints act as therapeutic agents by binding to and inactivating the pathogenic molecules by their conformational properties. This is the biological mechanism involved in the high dilution therapeutics involved in homeopathy.

MIT UNDERSTANDING OF THERAPEUTICS

Drug molecules act as therapeutic agents due to their chemical properties. It is an allopathic action, same way as any allopathic or ayurvedic drug works. They can interact with biological molecules and produce short term or longterm harmful effects, exactly similar to allopathic drugs. Please keep this point in mind when you have a temptation to use mother tinctures, low potencies or biochemical salts which are molecular drugs.

On the other hand, ‘molecular imprints’ contained in homeopathic drugs potentized above 12 or avogadro limit act as therapeutic agents by working as artificial ligand binds for pathogenic molecules due to their conformational properties by a biological mechanism that is truly homeopathic.

Understanding the fundamental difference between ‘molecular drugs’ and ‘molecular imprinted drugs’ regarding their biological mechanism of actions is very important.

MIT or Molecular Imprints Therapeutics refers to a scientific hypothesis that proposes a rational model for biological mechanism of homeopathic therapeutics. According to MIT hypothesis, potentization involves a process of ‘molecular imprinting’, where in the conformational details of individual drug molecules are ‘imprinted or engraved as hydrogen- bonded three-dimensional nano-cavities into a supra-molecular matrix of water and ethyl alcohol, through a process of molecular level ‘host-guest’ interactions. These ‘molecular imprints’ are the active principles of post-avogadro dilutions used as homeopathic drugs. Due to ‘conformational affinity’, molecular imprints can act as ‘artificial key holes or ligand binds’ for the specific drug molecules used for imprinting, and for all pathogenic molecules having functional groups ‘similar’ to those drug molecules. When used as therapeutic agents, molecular imprints selectively bind to the pathogenic molecules having conformational affinity, and deactivate them, thereby relieving the biological molecules from the inhibitions or blocks caused by pathogenic molecules.

According to MIT hypothesis, this is the biological mechanism of high dilution therapeutics involved in homeopathic cure. According to MIT hypothesis, ‘Similia Similibus Curentur’ means, diseases expressed through a particular group of symptoms could be cured by ‘molecular imprints’ forms of drug substances, which in ‘molecular’ or crude forms could produce ‘similar’ groups of symptoms in healthy individuals. ‘Similarity’ of drug symptoms and diseases indicates ‘similarity’ of pathological molecular inhibitions caused by drug molecules and pathogenic molecules, which in turn indicates conformational ‘similarity’ of functional groups of drug molecules and pathogenic molecules. Since molecular imprints of ‘similar’ molecules can bind to ‘similar ligand molecules by conformational affinity, they can act as the therapeutics agents when applied as indicated by ‘similarity of symptoms. Nobody in the whole history could so far propose a hypothesis about homeopathy as scientific, rational and perfect as MIT explaining the molecular process involved in potentization, and the biological mechanism involved in ‘similia similibus- curentur, in a way fitting well to modern scientific knowledge system.

If symptoms expressed in a particular disease condition as well as symptoms produced in a healthy individual by a particular drug substance were similar, it means the disease-causing molecules and the drug molecules could bind to same biological targets and produce similar molecular errors, which in turn means both of them have similar functional groups or molecular conformations. This phenomenon of competitive relationship between similar chemical molecules in binding to similar biological targets scientifically explains the fundamental homeopathic principle Similia Similibus Curentur.

Practically, MIT or Molecular Imprints Therapeutics is all about identifying the specific target-ligand ‘key-lock’ mechanism involved in the molecular pathology of the particular disease, procuring the samples of concerned ligand molecules or molecules that can mimic as the ligands by conformational similarity, preparing their molecular imprints through a process of homeopathic potentization upto 30c potency, and using that preparation as therapeutic agent.

Since individual molecular imprints contained in drugs potentized above avogadro limit cannot interact each other or interfere in the normal interactions between biological molecules and their natural ligands, and since they can act only as artificial binding sites for specific pathogenic molecules having conformational affinity, there cannot by any adverse effects or reduction in medicinal effects even if we mix two or more potentized drugs together, or prescribe them simultaneously- they will work.

Actually, the homeopathic materia medica works are the compilations of subjective and objective symptoms produced in healthy individuals by the actions of drugs in crude or molecular forms in healthy individuals. These symptoms represent the bio molecular errors produced by the actions of drug molecules upon the biological systems. Theoretically, homeopathy is the therapeutic art of treating diseases using potentized forms of drugs that were capable in crude forms to produce symptoms similar to those of the disease symptoms. According to this homeopathic approach, a drug substance should be used only to treat the disease conditions having symptoms similar to the symptoms given in the Materia Medica of that drug. When using drugs in mother tincture forms, homeopaths never follow this fundamental therapeutic principle of homeopathy. For example, if the Materia Medica of a drug says blood pressure was reduced during its proving, that drug should be used in potentized form to treat cases low blood pressure. Instead of doing that, if the doctor uses that drug in mother tincture form to treat high blood pressure, it is not homeopathy. To treat diseases utilising the chemical properties of drug molecules is obviously allopathy.

The plant “Allium sativum” is the scientific name for garlic, a widely used and well-known culinary and medicinal herb.  Common Name: Garlic. Family: Amaryllidaceae. Genus: Allium.

Garlic is a perennial that forms a bulb, which is its most commonly used part. This bulb consists of numerous cloves, each enclosed in a papery skin. The plant also produces a flower stalk with an umbel of white, pink, or purple flowers, and aerial bulbils. It typically grows up to 60 cm (24 inches) in height and produces hermaphrodite flowers that are pollinated by bees, other insects, and occasionally by self-pollination.

Garlic is renowned for its health-promoting properties. It has been used to treat and prevent a variety of conditions, including heart disease, high cholesterol, hypertension, and certain types of cancer. It contains several bioactive compounds, including allicin, alliin, and ajoene, which are responsible for its antiviral, antibacterial, antifungal, and antioxidant activities. Garlic is low in calories but rich in vitamin C, vitamin B6, manganese, selenium, and certain other minerals that are essential for good health.

ROLE OF DISULPHIDE BONDS IN BIOMOLECULAR INTERACTIONS

Understanding the MIT study of chemical constituents of Allium Sativum, and their importance in therapeutics could be possible only if we acquire a clear knowledge regarding the role of disulphide bonds and sulphur-containing functional groups in various vital biomolecular interactions in living systems in health and pathology. Disulfide functional groups play a pivotal role in biological interactions and molecular pathology, fundamentally influencing protein structure, function, and dynamics within cells and across systems.

Disulfide bonds are covalent linkages formed between the sulphur atoms of two cysteine amino acids within or between protein molecules. These bonds are critical for the stability, structure, and function of many proteins, playing key roles in a wide range of biological processes and interactions.

Disulfide bonds are crucial for the proper folding and stability of proteins. They help maintain the three-dimensional structure of proteins, which is essential for their biological function. For example, disulfide bonds in antibodies are critical for maintaining their Y-shaped structure, which is necessary for effective immune response. Proteins with disulfide bonds often exhibit greater thermal stability, which is important for proteins that must function under varying temperature conditions.

Disulfide bonds can play a role in signal transduction by altering their state in response to cellular redox changes. This can affect how signals are passed within and between cells, impacting cellular responses and pathways.

The reversible nature of disulfide bond formation and breakage serves as a mechanism for redox regulation within cells, influencing various cellular processes including apoptosis, gene expression, and protein function.

 For proteins that are secreted outside the cell, disulfide bonds help ensure that they fold correctly and remain stable once they are outside the cell’s reducing environment. Proteins with disulfide bonds are often components of the extracellular matrix and blood plasma, where disulfide bonds contribute to the mechanical stability and integrity of these structures.

Disulfide bonds in antibodies are essential for maintaining the structure necessary for binding to antigens effectively. The stability provided by disulfide bonds ensures that antibodies can withstand the often harsh conditions encountered during immune responses. The structure and function of antibodies heavily rely on disulfide bonds. These bonds maintain the integrity and the antigen-binding capability of antibodies, crucial for effective immune responses. Aberrations in these bonds can compromise immune system efficacy or lead to autoimmune disorders where the immune system misidentifies self proteins as foreign.

Disulfide bonds provide the necessary strength and rigidity to keratin, which is a major component of hair, nails, and skin. The density and pattern of these bonds determine the physical properties of these structures.

In peptide hormones, disulfide bonds are critical for maintaining the active form and proper function. Similarly, receptor proteins often rely on disulfide bonds for their structural integrity and ability to bind ligands. Disulfide bonds, therefore, are integral to the function and stability of a wide array of proteins and peptides, impacting everything from basic cellular processes to complex systemic functions like the immune response. Their role in mediating protein interactions and maintaining structural integrity makes them crucial for the proper functioning of biological systems. Many hormones and receptors depend on disulfide bonds for their proper structure and function. For example, insulin, a key hormone in glucose metabolism, requires disulfide bonds to maintain its active form. Similarly, many G-protein coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs) have critical disulfide bonds that maintain their structural integrity and functionality for signal transduction.

Disulfide bonds between cysteine residues in proteins create stable loops and folds that are critical for maintaining the functional conformation of proteins. This structural role is essential for the activity of many proteins, including enzymes, hormones, and structural proteins in tissues.

In enzymatic processes, disulfide bonds can act as redox-sensitive switches that modulate enzyme activity. The formation or reduction of disulfide bonds can change the enzyme’s shape and, consequently, its activity. This is particularly important in regulatory enzymes that control metabolic pathways, where changes in the redox state can signal shifts in metabolic demands. In some enzymes, disulfide bonds are involved directly in the catalytic mechanism, influencing the electron distribution and making the enzyme more efficient at catalyzing chemical reactions. In other cases, disulfide bonds can act as regulatory switches. Reduction (breaking) and oxidation (forming) of disulfide bonds can activate or deactivate enzyme functions, serving as a control mechanism for enzyme activity.

Disulfide bonds are crucial in redox signaling pathways. They can undergo reversible oxidation and reduction, acting as molecular switches that respond to changes in the cellular redox environment. This mechanism allows cells to adapt to oxidative stress, regulate apoptosis, and modulate the activity of redox-sensitive transcription factors, thereby impacting gene expression and cellular responses. Changes in the redox state of cells, often seen in cancer cells, can alter disulfide bond formation and stability in key regulatory proteins, affecting cell growth and apoptosis pathways. The differential redox environment of cancer cells compared to normal cells can lead to altered disulfide bond patterns, impacting protein function and contributing to malignancy.

Incorrect disulfide bond formation can lead to protein misfolding, which is implicated in various diseases, such as cystic fibrosis and neurodegenerative disorders like Alzheimer’s and Parkinson’s disease. In cystic fibrosis, for example, a misfolded CFTR protein due to improper disulfide bonding results in its degradation and malfunction.

Oxidative stress leading to disruption of disulfide bond homeostasis in cardiovascular tissues can contribute to the pathogenesis of diseases like atherosclerosis and heart failure. The dynamic nature of disulfide bonds, facilitating both stability and flexibility in response to redox changes, places them at the heart of many physiological processes and pathologies. Understanding these roles provides insights into disease mechanisms and potential therapeutic targets, especially in conditions characterised by oxidative stress and redox imbalance.

CHEMICAL CONSTITUENTS IN ALLIUM SATIVUM

Presence of the highly active disulphides and sulphur-containing functional groups in the molecular constituents of allium sativum raises this drug to the status of “biological sulphur” in MIT understanding of homeopathy and makes it the NUMBER ONE remedy in the therapeutics of diverse kinds of acute and chronic disease conditions.

Allicin is perhaps the most well-known compound in garlic, formed when garlic is crushed or chopped. Allicin has antimicrobial, anti-fungal, antiviral, and antioxidant properties. It’s also known for its ability to lower blood pressure and cholesterol levels, and it may have anti-cancer properties.

Diallyl Disulfide (DADS) is formed during the decomposition of allicin. It has been found to have anti-cancer effects, particularly in the suppression of certain tumour growths. It also possesses antimicrobial properties and may contribute to cardiovascular health by reducing cholesterol triglyceride levels.

S-Allyl Cysteine (SAC) is a water-soluble organosulfur compound, known for its antioxidant properties. It helps protect against oxidative stress and may also support cardiovascular health by reducing the accumulation of cholesterol and inhibiting the formation of atherosclerotic plaques.

Ajoene is a compound formed from allicin and has significant anticoagulant (blood-thinning) properties. It’s also effective against a variety of fungal infections and shows potential in treating skin diseases and cancers.

Alliin  is the precursor to allicin, which is actually odorless until converted into allicin via enzymatic reactions. It has moderate antimicrobial properties.

Vinyldithiins are also breakdown products of allicin and have been shown to have anti-inflammatory and antioxidant effects.

Saponins found in garlic, have immune-boosting and cholesterol-lowering effects. They also exhibit antioxidant and anti-cancer activities.

Flavonoids, which are known for their antioxidant properties. They help reduce oxidative stress in the body and may reduce the risk of chronic diseases such as heart disease and cancer.

Garlic is rich in vitamins such as Vitamin C and Vitamin B6, and minerals like selenium and manganese, which play critical roles in immune function, metabolism, and cellular health.

Together, these compounds make garlic a potent natural remedy with a diverse range of health benefits. The combination of antimicrobial, antioxidant, anti-inflammatory, and cardioprotective actions helps explain why garlic has been used medicinally for thousands of years.

Garlic (Allium sativum) is generally considered safe for most people, but it can cause some adverse effects, particularly when consumed in large quantities or used as a supplement.

Consuming large amounts of garlic, especially on an empty stomach, can cause gastrointestinal irritation, including heartburn, gas, nausea, vomiting, and diarrhea. Some people may also experience an increase in acid reflux symptoms when consuming garlic.

Garlic is infamous for causing bad breath and a distinct body odor that can be persistent and difficult to eliminate, due to compounds like allicin that are excreted through the skin and lungs.

Although rare, some individuals may have allergic reactions to garlic. Symptoms can range from mild (skin irritation, hives, tingling or swelling of the mouth) to severe (anaphylaxis).

Garlic has natural anticoagulant properties, which can thin the blood. While this can be beneficial in preventing blood clots, it can also increase the risk of bleeding, particularly if taken in high doses or in conjunction with other blood-thinning medications such as warfarin or aspirin.

Applying garlic directly to the skin can cause burns and irritation, especially if left on the skin for extended periods. This is due to the potent compounds like allicin.

Garlic is known to help lower blood pressure, but in some cases, it can cause blood pressure to fall too low, particularly when consumed in large doses or as a concentrated supplement. This can lead to lightheadedness or fainting.

Garlic can interact with certain medications, including anticoagulants, antiplatelet drugs, and drugs used for HIV treatment. It can also affect the metabolism of medications by the liver, potentially altering their effectiveness.

Due to its blood-thinning properties, consuming garlic before surgical procedures can increase the risk of excessive bleeding. It is typically recommended to avoid garlic at least two weeks before any planned surgery.

While moderate consumption of garlic is safe for most people and can contribute to a healthy diet, it’s important to be cautious with high doses or concentrated forms, especially for individuals with certain health conditions or those taking specific medications. Always consult a healthcare provider if in doubt about garlic’s impact on health, especially when considering garlic supplements.

ALLICIN IN GARLIC

Allicin is a sulfur-containing compound found in garlic and is primarily responsible for garlic’s distinctive odor and many of its health benefits. It is not present in fresh garlic cloves but is produced when garlic is chopped, crushed, or chewed. This process causes the enzyme alliinase to convert alliin, a naturally occurring amino acid in garlic, into allicin. Allicin is well-known for its antimicrobial properties. It has been shown to be effective against a range of bacteria, fungi, viruses, and parasites. This makes garlic a popular natural remedy for preventing and fighting infections. Allicin acts as a strong antioxidant, helping to protect cells from the damage caused by free radicals. This is important for preventing chronic diseases and supporting overall health. Allicin can help improve cardiovascular health in several ways. It has been found to help lower cholesterol levels, reduce blood pressure, and decrease the risk of artery hardening (atherosclerosis). These effects contribute to reducing the risk of heart disease. The compound also has anti-inflammatory properties, which can help manage conditions like arthritis and other inflammatory diseases. Some research suggests that allicin may have properties that help prevent cancer by promoting the death of cancer cells and blocking pathways that lead to cancer growth. Allicin is quite volatile and can be degraded by heat, which is why garlic’s medicinal properties are best preserved in its raw form or as a supplement specifically designed to stabilise allicin. In the kitchen, adding garlic at the end of cooking can help preserve some of its allicin content.

Allicin is available in dietary supplements, often in an aged form, which may be more stable and gentle on the stomach. These supplements are used for the same health benefits associated with fresh garlic, particularly for those seeking to avoid garlic’s strong taste or potential breath odor. Despite its numerous health benefits, it’s important to use allicin-containing supplements cautiously as they can interact with certain medications and are not suitable for everyone.

Research on allicin’s potential for cancer prevention has produced intriguing results, though it is important to note that most of this research has been conducted in laboratory settings and on animal models, with limited clinical trials on humans. Here are some of the key findings and mechanisms through which allicin may help in cancer prevention. Allicin’s antioxidant capability can neutralise free radicals in the body. Free radicals are unstable molecules that can damage cells and lead to mutations and cancer. By reducing oxidative stress, allicin may help prevent the initiation and progression of cancer. Several studies have demonstrated that allicin can inhibit the growth of various types of cancer cells, including breast, prostate, and colorectal cancers. It appears to interfere with cellular processes that are essential for cancer cell growth and replication. Apoptosis, or programmed cell death, is another mechanism through which allicin may exert its anti-cancer effects. Research indicates that allicin can induce apoptosis in certain cancer cell lines, thus helping to remove cancerous cells from the body. Chronic inflammation is a known risk factor for the development of cancer. Allicin’s anti-inflammatory properties can potentially reduce this risk by modulating inflammatory pathways in the body. A study published in “Anticancer Research” suggested that allicin could inhibit the growth of human breast cancer cells both in vitro and in animal models. Research in “Cancer Prevention Research” found that derivatives of allicin were effective in suppressing the growth of colorectal cancer cells by inducing cell cycle arrest and apoptosis. Some studies have suggested that allicin may help in reducing the risk of prostate cancer by influencing pathways that affect cancer cell proliferation and survival.

While laboratory and animal studies are promising, human clinical trials are relatively scarce and results are less conclusive. The bioavailability of allicin (i.e., its absorption and utilisation by the human body when ingested through diet or supplements) also presents a challenge, as allicin is highly unstable and can be quickly decomposed in the stomach. Furthermore, the dosage and long-term safety of using high concentrations of allicin for cancer prevention have not been well-established. Therefore, while allicin is considered a potential anticancer agent, more research, especially in human clinical settings, is needed to fully understand its efficacy and safety profile. Overall, the research supports the potential of allicin as part of a broader approach to cancer prevention, particularly due to its antioxidant, anti-inflammatory, and direct anticancer properties. However, relying solely on allicin for cancer prevention without considering other medical advice and lifestyle factors would be insufficient and potentially misleading.

MOLECULAR MECHANISM OF ACTION OF ALLICIN

Allicin, the bioactive compound derived from garlic, exhibits its anti-cancer effects through a variety of molecular mechanisms that inhibit cancer cell proliferation. These mechanisms are complex and involve multiple pathways within cells. Here are some of the key molecular processes through which allicin may exert its anti-cancer effects:

One of the primary mechanisms by which allicin inhibits cancer cell proliferation is through the induction of apoptosis. Allicin can activate multiple signalling pathways that lead to apoptosis, including the mitochondrial pathway. It increases the production of reactive oxygen species (ROS) within cancer cells, which can damage cellular components and trigger the release of cytochrome c from mitochondria. This release activates caspases, a family of proteases that play essential roles in programmed cell death.

Allicin has been shown to cause cell cycle arrest in cancer cells. By interfering with the cell cycle, allicin can stop the cells from dividing and multiplying. Studies have shown that allicin can arrest the cell cycle at various phases, including the G1/S and G2/M checkpoints, depending on the type of cancer cell. This is often mediated through the modulation of cyclins and cyclin-dependent kinases (CDKs), which are crucial for cell cycle progression.

Angiogenesis, the formation of new blood vessels, is critical for tumour growth and metastasis. Allicin can inhibit angiogenesis by reducing the expression of vascular endothelial growth factor (VEGF) and other angiogenic factors in tumor cells. This reduces the tumor’s ability to develop new blood vessels, thereby limiting its growth and spread.

Allicin can influence the expression of various genes involved in cancer development and progression. For example, it can down-regulate the expression of oncogenes, which are genes that when mutated or expressed at high levels, promote tumour growth. Conversely, allicin can up-regulate tumour suppressor genes, which help protect cells from cancer.

Metastasis is the spread of cancer from one part of the body to another, and it is a major cause of cancer mortality. Allicin has been found to inhibit several processes involved in metastasis, including cell adhesion, invasion, and migration. This is achieved through the modulation of matrix metalloproteinases (MMPs), which are enzymes that degrade the extracellular matrix and facilitate cancer cell invasion.

Recent studies suggest that allicin may also exert anti-cancer effects through epigenetic modifications. These include changes in DNA methylation and histone modification, which can alter gene expression without changing the DNA sequence itself. This can lead to the reactivation of tumor suppressor genes and the silencing of oncogenes.

These diverse molecular actions of allicin contribute to its potential as an anti-cancer agent, affecting multiple stages of cancer development and progression. While the evidence from laboratory studies is compelling, translating these effects into effective clinical treatments requires further investigation, particularly to understand how allicin can be effectively delivered and used within the human body.

ANTICOAGULANT PROPERTIES OF GARLIC

The specific chemical constituent in garlic that gives it anticoagulant properties is ajoene. Ajoene is a compound formed from another compound called allicin when garlic is crushed or chopped and then allowed to stand. Allicin itself is initially formed from the precursor compound alliin when garlic is damaged.

Ajoene works by inhibiting platelet aggregation, which is the clumping together of platelets in the blood—part of the blood clotting process. By preventing platelet aggregation, ajoene can reduce the formationAN of blood clots, making it a natural anticoagulant. This property makes garlic and its derivatives potentially beneficial in preventing conditions such as thrombosis, although care must be taken when used with other anticoagulant medications to avoid excessive bleeding.

“GARLIC BREATH”

The characteristic bad breath caused by consuming garlic, commonly known as “garlic breath,” results from several molecular processes involving the breakdown and release of sulfur-containing compounds from garlic.

When garlic is consumed, it is digested and its sulfur-containing compounds, notably allicin, are broken down into smaller volatile compounds. Allicin, which is formed when garlic is chopped or crushed, quickly breaks down into various volatile sulfur compounds such as diallyl disulfide, allyl methyl sulfide, allyl mercaptan, and others.

These volatile compounds are absorbed into the bloodstream through the digestive tract. Once absorbed, they circulate throughout the body. As blood passes through the lungs, these sulfur compounds can be transferred from the blood to the air exhaled. This results in the breath carrying the distinctive odor of these compounds. Some of the sulfur compounds are also excreted through the pores of the skin. This can contribute to a lingering body odor in addition to bad breath. Compounds like allyl methyl sulfide are particularly notable for their persistence in the body, as they are not metabolized quickly. This is why the odor can last for several hours and up to a day or more after consuming garlic.

The metabolic pathways involved highlight how garlic’s compounds are metabolized and eventually excreted, explaining both the persistence and the intensity of the odor associated with garlic consumption. This process is entirely natural and is part of what gives garlic both its culinary appeal and its notorious social side effects like bad breath.

BLOOD THINNING PROPERTIES

Garlic’s blood-thinning properties, largely attributed to its ability to prevent blood clots, are primarily driven by its sulfur-containing compounds, especially ajoene and other related compounds.

The primary mechanism by which garlic acts as a blood thinner is through the inhibition of platelet aggregation. Ajoene, a compound derived from allicin (which is itself formed when garlic is crushed or chopped), is particularly effective in this regard. Ajoene blocks the activation of platelets, which are small blood cells that play a critical role in blood clot formation. By preventing platelets from clumping together, ajoene reduces the likelihood of clot formation. This is crucial in the prevention of thrombosis, which can lead to heart attacks and strokes.

Garlic and its compounds can interfere with the synthesis of thromboxane A2, a molecule that promotes platelet aggregation and vasoconstriction. By reducing the levels of thromboxane A2, garlic helps in keeping the blood vessels dilated and reduces platelet activity, further contributing to its anticoagulant effects.

Garlic enhances fibrinolytic activity, which is the process that breaks down clots after they are formed. This is primarily achieved through the modulation of enzymatic activity that controls fibrinolysis, the breakdown of fibrin in blood clots, thus helping in the prevention and potential dissolution of existing clots.

Some studies suggest that garlic can help reduce the viscosity (thickness) of the blood, which in turn helps in reducing the overall risk of clot formation. Lower plasma viscosity facilitates smoother blood flow, reducing the strain on the cardiovascular system.

Garlic has been shown to influence lipid levels in the blood. It can lower the concentrations of total cholesterol and low-density lipoprotein (LDL), which are known risk factors for cardiovascular disease. By improving lipid profiles, garlic indirectly supports cardiovascular health and reduces clotting risks associated with high cholesterol levels.

These molecular processes highlight how garlic contributes to anticoagulant effects through a combination of mechanisms, including direct inhibition of platelet aggregation and broader impacts on cardiovascular health. While garlic can be beneficial in preventing blood clotting, it is essential for individuals on anticoagulant medications to consult healthcare providers due to potential interactions and enhanced effects.

EFFECTS OF GARLIC ON LIPID PROFILE

Garlic has been shown to have beneficial effects on lipid profiles, particularly in reducing levels of total cholesterol and low-density lipoprotein (LDL) cholesterol. The molecular mechanisms involved in these effects are complex and involve multiple biochemical pathways:

Garlic compounds, particularly those derived from allicin such as ajoene and other sulfur-containing molecules, have been shown to inhibit the activity of HMG-CoA reductase. This enzyme plays a critical role in the hepatic synthesis of cholesterol. By inhibiting this enzyme, garlic can reduce the body’s internal production of cholesterol, similarly to how statin drugs work.

Saponins found in garlic also contribute to the reduction of blood cholesterol. They can bind to cholesterol molecules, preventing their absorption and facilitating their excretion from the body.

Garlic stimulates the activity of LDL receptors on liver cells. This increase in receptor activity helps to clear LDL cholesterol from the bloodstream more effectively, thereby lowering blood levels of LDL cholesterol.

Garlic promotes the conversion of cholesterol to bile acids. This not only helps in reducing blood cholesterol levels but also aids in fat digestion and absorption, indirectly affecting cholesterol metabolism.

Oxidation of LDL cholesterol is a critical factor in the development of atherosclerosis. Garlic’s antioxidant properties help prevent the oxidation of LDL cholesterol, reducing the risk of plaque formation within arterial walls.

Garlic and its compounds can interfere with the absorption of fats in the intestine, which helps lower the levels of circulating cholesterol.

By promoting the excretion of cholesterol and its metabolites in the feces, garlic helps reduce the overall cholesterol levels in the body.

Chronic inflammation is linked to higher cholesterol levels and atherosclerosis. Garlic’s anti-inflammatory properties help reduce inflammation, which is indirectly beneficial for maintaining healthy cholesterol levels.

These molecular processes make garlic a multifaceted tool in the management of cholesterol levels, particularly LDL cholesterol. The combination of inhibiting cholesterol synthesis, enhancing its metabolism, preventing LDL oxidation, and modulating lipid absorption effectively contributes to cardiovascular health. However, the efficacy of garlic in lowering cholesterol may vary among individuals, and its use should complement other lifestyle factors like diet and exercise for optimal cardiovascular health.

Garlic promotes the conversion of cholesterol to bile acids through a biochemical pathway involving the regulation of liver enzymes that play critical roles in cholesterol metabolism. The primary enzyme involved in this process is cholesterol 7α-hydroxylase (CYP7A1), which is the rate-limiting enzyme in the bile acid synthesis pathway from cholesterol.

Activation of Cholesterol 7α-hydroxylase (CYP7A): This enzyme catalyzes the first step in the conversion of cholesterol into bile acids in the liver. By hydroxylating cholesterol at the 7α-position, it initiates the pathway that leads to the production of bile acids. Compounds in garlic, particularly those related to its sulfur-containing constituents, have been shown to modulate the expression and activity of CYP7A1. Research suggests that these compounds can up-regulate the expression of this enzyme, thereby enhancing the metabolic conversion of cholesterol into bile acids.

Regulation at the Genetic Level: Garlic influences the transcriptional activity of genes involved in cholesterol metabolism. It affects the nuclear receptors and transcription factors that regulate the expression of CYP7A1. For instance, garlic may interact with liver X receptors (LXRs) and farnesoid X receptor (FXR), which play key roles in cholesterol homeostasis. Saponins and other garlic-derived molecules can modulate these receptors, enhancing the transcription of CYP7A1 and thus promoting the conversion of cholesterol to bile acids.

Enhanced Bile Acid Synthesis: As CYP7A1 activity increases, more cholesterol is converted into 7α-hydroxycholesterol and subsequently into different bile acids, such as cholic acid and chenodeoxycholic acid. These bile acids are then conjugated, usually with glycine or taurine, making them more effective in fat digestion and absorption. By converting cholesterol into bile acids, garlic effectively helps lower the cholesterol levels in the blood. These bile acids are eventually excreted in the feces, further helping to reduce the overall cholesterol pool in the body.

Antioxidant Effects: Garlic’s antioxidant properties also support the liver’s function and protect hepatocytes (liver cells) during the conversion process. By reducing oxidative stress, garlic ensures that the biochemical pathways involved in bile acid synthesis operate efficiently.

By enhancing the activity of CYP7A1 and potentially affecting the expression of genes involved in cholesterol and bile acid metabolism, garlic supports the conversion of cholesterol to bile acids, thereby contributing to reduced cholesterol levels and promoting a healthy lipid profile. This process is crucial for maintaining cardiovascular health and preventing conditions such as hypercholesterolemia and atherosclerosis.

HARMFUL EFFECTS OF GARLIC

Garlic, while offering numerous health benefits, can also cause gastrointestinal irritation such as gas, bloating, acid reflux, and stomach upset in some individuals. The molecular processes and enzymes involved in these reactions include several key components related to the digestion and metabolic breakdown of garlic’s sulfur-containing compounds.

Allicin and Other Organosulfur Compounds: When garlic is crushed or chopped, it releases allicin, which quickly breaks down into various other sulfur-containing compounds like diallyl sulfide, diallyl disulfide, and others. These compounds can be irritants to the gastric mucosa, causing inflammation and irritation. These compounds can increase the release of gastric acid or slow gastric emptying, exacerbating symptoms of acid reflux or gastroesophageal reflux disease (GERD).  

Garlic contains alliin and the enzyme alliinase, which are stored in different cell compartments. When the garlic cell structure is disrupted (through cutting or crushing), alliinase converts alliin into allicin, which is highly reactive and breaks down into various metabolites responsible for both the beneficial and irritative properties of garlic. The metabolites formed can stimulate the mucosa of the stomach and intestines, potentially leading to irritation and symptoms like gas and bloating.

While not directly linked to a specific enzyme, the compounds in garlic can have antimicrobial properties that may disrupt the normal balance of bacteria in the gut. This disruption can lead to gas and bloating as the gut flora adjust, sometimes unfavourably, to the antibacterial agents in garlic.

Gastrointestinal Motility: Some compounds in garlic can stimulate the gut’s motility, leading to either faster or slower movement of content through the gut. Changes in motility can lead to symptoms like gas, bloating, or diarrhoea.

The irritation caused by sulphur compounds might increase peristalsis (the movements of the digestive tract that propel food along), which can contribute to discomfort and increased acid reflux, as stomach contents may be pushed back into the oesophagus.

Garlic’s acidic nature and its ability to relax the lower oesophageal sphincter (the valve that prevents stomach acid from moving upwards) can lead to acid reflux. This relaxation allows stomach acid to escape into the esophagus, causing heartburn.

In some individuals, the indigestible components of garlic may reach the colon where they are fermented by bacteria, producing gas and leading to bloating and discomfort.

The gastrointestinal effects of garlic are thus a combination of its chemical makeup affecting the stomach’s environment, its impact on digestive enzymes, and its interaction with gut flora. For individuals with sensitive stomachs or gastrointestinal conditions like IBS or GERD, consuming garlic can exacerbate symptoms. Awareness and moderation can help manage these effects for those who are sensitive to garlic.

SCOPE OF ALLIUM SATIVUM IN MIT THERAPEUTICS

Molecular forms of chemical constituents of allium sativum contained in its mother tincture preparations produce biological effects in living systems by binding to biological molecules utilising their sulphur functional groups. Many endogenous or exogenous disease-causing molecules, including various bacterial and viral proteins, produce diseases by causing pathological molecular inhibitions in diverse molecular pathways in living systems by binding to biological targets using their sulphur containing functional groups. Allium Sativum in potentized forms above 12c will contain molecular imprints of sulphur-containing functional groups being part of its constituent molecules. These molecular imprints can act as artificial binding pockets for any pathogenic molecule having sulphur-containing functional groups and remove the molecular inhibitions that caused a particular disease condition. This is the biological mechanism by which post-avogadro potentized forms of allium sativum produces therapeutic effects.

MIT approach to therapeutics involves the detailed study of target-ligand molecular mechanism underlying the specific pathological processes, identifying the exact participant molecules, preparing the molecular imprints of ligand molecules or similar molecules, and applying those molecular imprints as therapeutic agents. Since potentized forms of Allium Sativa will contain molecular imprints of sulphur-containing functional groups of constituent molecules, it could be effectively used as therapeutic agents in any disease condition where sulphur-containing functional groups are involved as a pathogenic factor.

Allicin is an important constituent of garlic. One of the primary mechanisms by which allicin inhibits cancer cell proliferation is through the induction of apoptosis. Allicin can activate multiple signalling pathways that lead to apoptosis, including the mitochondrial pathway. It increases the production of reactive oxygen species (ROS) within cancer cells, which can damage cellular components and trigger the release of cytochrome c from mitochondria. This release activates caspases, a family of proteases that play essential roles in programmed cell death. Allicin has been shown to cause cell cycle arrest in cancer cells. By interfering with the cell cycle, allicin can stop the cells from dividing and multiplying. Studies have shown that allicin can arrest the cell cycle at various phases, including the G1/S and G2/M checkpoints, depending on the type of cancer cell. This is often mediated through the modulation of cyclins and cyclin-dependent kinases (CDKs), which are crucial for cell cycle progression. Angiogenesis, the formation of new blood vessels, is critical for tumour growth and metastasis. Allicin can inhibit angiogenesis by reducing the expression of vascular endothelial growth factor (VEGF) and other angiogenic factors in tumor cells. This reduces the tumor’s ability to develop new blood vessels, thereby limiting its growth and spread. Allicin can influence the expression of various genes involved in cancer development and progression. For example, it can down-regulate the expression of oncogenes, which are genes that when mutated or expressed at high levels, promote tumour growth. Conversely, allicin can up-regulate tumour suppressor genes, which help protect cells from cancer. Metastasis is the spread of cancer from one part of the body to another, and it is a major cause of cancer mortality. Allicin has been found to inhibit several processes involved in metastasis, including cell adhesion, invasion, and migration. This is achieved through the modulation of matrix metalloproteinases (MMPs), which are enzymes that degrade the extracellular matrix and facilitate cancer cell invasion. Recent studies suggest that allicin may also exert anti-cancer effects through epigenetic modifications. These include changes in DNA methylation and histone modification, which can alter gene expression without changing the DNA sequence itself. This can lead to the reactivation of tumor suppressor genes and the silencing of oncogenes. These diverse molecular actions of allicin contribute to its potential as an anti-cancer agent, affecting multiple stages of cancer development and progression. While the evidence from laboratory studies is compelling, translating these effects into effective clinical treatments requires further investigation, particularly to understand how allicin can be effectively delivered and used within the human body.

Various endogenous or exogenous pathogenic molecules having sulphur-containing functional groups similar to allicin can inhibit this molecular pathway. In such cases, molecular imprints of allicin can act as binding pockets for those pathogenic molecules, and produce anti cancer effects.

The specific chemical constituent in garlic that gives it anticoagulant properties is ajoene. Ajoene is a compound formed from another compound called allicin when garlic is crushed or chopped and then allowed to stand. Allicin itself is initially formed from the precursor compound alliin when garlic is damaged. Ajoene works by inhibiting platelet aggregation, which is the clumping together of platelets in the blood—part of the blood clotting process. By preventing platelet aggregation, ajoene can reduce the formation of blood clots, making it a natural anticoagulant. This property makes garlic and its derivatives potentially beneficial in preventing conditions such as thrombosis, although care must be taken when used with other anticoagulant medications to avoid excessive bleeding. Molecular imprints of ajoene can act as a homeopathic anticoagulant, by removing the molecular inhibitions caused by endogenous or exogenous pathogenic molecules having sulphur containing functional groups.

The characteristic bad breath caused by consuming garlic, commonly known as “garlic breath,” results from several molecular processes involving the breakdown and release of sulfur-containing compounds from garlic. When garlic is consumed, it is digested and its sulfur-containing compounds, notably allicin, are broken down into smaller volatile compounds. Allicin, which is formed when garlic is chopped or crushed, quickly breaks down into various volatile sulfur compounds such as diallyl disulfide, allyl methyl sulfide, allyl mercaptan, and others. These volatile compounds are absorbed into the bloodstream through the digestive tract. Once absorbed, they circulate throughout the body. As blood passes through the lungs, these sulfur compounds can be transferred from the blood to the air exhaled. This results in the breath carrying the distinctive odor of these compounds. Some of the sulfur compounds are also excreted through the pores of the skin. This can contribute to a lingering body odor in addition to bad breath. Compounds like allyl methyl sulfide are particularly notable for their persistence in the body, as they are not metabolized quickly. This is why the odor can last for several hours and up to a day or more after consuming garlic. Allium Sativum 30 can act as a highly effective drug in compating the issue of offensive body odor as well as bad breath. We know, sulphur dioxide is involved in causing offensive odors in human body. Molecular imprints of sulphur-containing compounds in garlic can obviously resolve this issue.

In Autoimmune diseases caused by cross reactivity of antibodies, antibodies bind to autoantigens having sulphur containing functional groups. Molecular imprints of sulphur-containing chemical molecules of Allium Sativum can act as artificial binding pockets for these auto antigens, thereby preventing them from binding to the cross-reactive antibodies.

By enhancing the activity of CYP7A1 and potentially affecting the expression of genes involved in cholesterol and bile acid metabolism, garlic supports the conversion of cholesterol to bile acids, thereby contributing to reduced cholesterol levels and promoting a healthy lipid profile. This process is crucial for maintaining cardiovascular health and preventing conditions such as hypercholesterolemia and atherosclerosis. Constituent molecules of garlic can interact with nuclear receptors and transcription factors that regulate the enzymes involved in cholesterol metabolism. As such, molecular imprints of constituent molecules can bind to deactivate pathogenic molecules that inhibit the enzymes and dyregulate the conversion of cholesterol into bile acids.

Garlic’s blood-thinning properties, largely attributed to its ability to prevent blood clots, are primarily driven by its sulfur-containing compounds, especially ajoene and other related compounds. The primary mechanism by which garlic acts as a blood thinner is through the inhibition of platelet aggregation. Ajoene, a compound derived from allicin (which is itself formed when garlic is crushed or chopped), is particularly effective in this regard. Ajoene blocks the activation of platelets, which are small blood cells that play a critical role in blood clot formation. By preventing platelets from clumping together, ajoene reduces the likelihood of clot formation. This is crucial in the prevention of thrombosis, which can lead to heart attacks and strokes. Garlic and its compounds can interfere with the synthesis of thromboxane A2, a molecule that promotes platelet aggregation and vasoconstriction. By reducing the levels of thromboxane A2, garlic helps in keeping the blood vessels dilated and reduces platelet activity, further contributing to its anticoagulant effects.

Garlic enhances fibrinolytic activity, which is the process that breaks down clots after they are formed. This is primarily achieved through the modulation of enzymatic activity that controls fibrinolysis, the breakdown of fibrin in blood clots, thus helping in the prevention and potential dissolution of existing clots. In pathological conditions of blood clotting caused by sulphur containing endogenous or exogenous agents, molecular imprints of functional groups contained in potentized forms of Allium Sativa can act as an exellent anti-clotting medication. This is the readon why Avena Sativa 30 should be included in the MIT prescription for arterial thrombosis and cardiac amergencies.

Molecular forms of Allium Sativum were found to cause gastrointestinal irritation such as gas, bloating, acid reflux, and stomach upset. The molecular processes and enzymes involved in these pathological effects include several key components related to the digestion and metabolic breakdown of garlic’s sulfur-containing compounds.  As per MIT perspective, Allium Sativum 30c will be a very good remedy for various pathological conditions where gas, bloating, acid reflux, and stomach upset are prominent symptoms.

When garlic is crushed or chopped, it releases allicin, which quickly breaks down into various other sulfur-containing compoundser like diallyl sulfide, diallyl disulfide, and others. These compounds cause irritation to the gastric mucosa, causing inflammation and irritation. These compounds can increase the release of gastric acid or slow gastric emptying, exacerbating symptoms of acid reflux or gastroesophageal reflux disease (GERD). The compounds in garlic can have antimicrobial properties that may disrupt the normal balance of bacteria in the gut. This disruption can lead to gas and bloating as the gut flora adjust, sometimes unfavourably, to the antibacterial agents in garlic. Some compounds in garlic can stimulate the gut’s motility, leading to either faster or slower movement of content through the gut. The irritation caused by sulphur compounds might increase peristalsis (the movements of the digestive tract that propel food along), which can contribute to discomfort and increased acid reflux, as stomach contents may be pushed back into the oesophagus. Garlic’s acidic nature and its ability to relax the lower oesophageal sphincter (the valve that prevents stomach acid from moving upwards) can lead to acid reflux. This relaxation allows stomach acid to escape into the oesophagus, causing heartburn. In some individuals, the indigestible components of garlic may reach the colon where they are fermented by bacteria, producing gas and leading to bloating and discomfort.  Obviously, Allium Sativa 30 will work as a great therapeutic agent for Heartburn, Hyperacidity, GERD, gastritis and oesophagitis.  Changes in motility can lead to symptoms like persistent diarrhoea, irritable bowel syndrome, ulcerative colitis etc. Potentized forms of Allium Sativa will work as therapeutic agent in such cases.

REFERENCES:

            1.         “Garlic and Other Alliums: The Lore and the Science” by Eric Block.

            2.         “Garlic: The Science and Therapeutic Application of Allium sativum L. and Related Species” (Second Edition), edited by Heinrich P. Koch and Larry D. Lawson.

            3.         “Allicin: chemistry and biological properties” by M. Ankri and D. Mirelman, published in Biofactors.

            4.         “A review of the bioactivity and potential health benefits of garlic: a nutraceutical” by Matthew J. Budoff, published in the Journal of Nutrition.

            5.         “Garlic for the prevention of cardiovascular morbidity and mortality in hypertensive patients” published in Cochrane Database of Systematic Reviews.

            6.         “Effect of garlic on blood pressure: A systematic review and meta-analysis” by Karin Ried et al., published in BMC Cardiovascular Disorders.

            7.         “Antibacterial activity of garlic and onions: a historical perspective” published in the Journal of Ethnopharmacology.

            8.         “Antiviral properties of garlic: in vitro effects on influenza B, herpes simplex and coxsackie viruses” by P. Tatarintsev et al., published in Planta Medica.

            9.         “Anticancer properties of garlic: a review” published in Cancer Prevention Research.

            10.      “Garlic: a review of potential therapeutic effects” by Leyla Bayan, Peir Hossain Koulivand, and Ali Gorji, published in Avicenna Journal of Phytomedicine.

            11.       “Sulfur Compounds in Garlic: Underestimated Players in the Chemistry and Biochemistry of Allium sativum” published in Angewandte Chemie International Edition.

Author: Chandran Nambiar K C

I am Chandran Nambiar K C Author, REDEFINING HOMEOPATHY Managing Director, Fedarin Mialbs Private Limited Developer. SIMILIMUM ULTRA Homeopathic Software I am not a scientist, academician, scholar, professional homeopath or anybody with 'big credentials', but an old lay man, a retired government servant, who accidentally happened to fall into the deep waters of the great ocean of homeopathic knowledge during his fiery teenage years, and was destined to live a whole life exploring the mysteries of that wonderful world with unending enthusiasm. My interest in homeopathy happened very accidentally when I was only 20 years old UNDERGRADUATE ZOOLOGY student, through a constant relationship with a local practitioner who happened to be father of my classmate. I was a regular visitor in his clinic, where from I started reading BOERICKE MATERIA MEDICA and other homeopathic books, which helped me to cure myself my troublesome asthma that have been haunting me since my childhood days. I became a voracious reader of homeopathy.

Leave a comment